Вариант 1: ATmega8 + Nokia 5110 LCD + питание 3V

В схеме используются Atmega8-8PU (внешний кварц частотой 8MHz), Nokia 5110 LCD и транзистор для обработки импульсов от геркона. Регулятор напряжения на 3,3V обеспечивает питание для всей цепи.

Все компоненты были смонтированы на макетной плате, включая разъемы для: ISP - программатора (USBAsp), 5110 Nokia LCD, питания (5V, подаваемого на 3.3V - регулятор), геркона, кнопки сброса и 2-контактный разъем, используемый для считывания полярности обмотки двигателя привода станка, чтобы знать, увеличивать или уменьшать счетчик.

Назначение разъемов:
J1: Питание. На разъем поступает 5V и дальше на стабилизатор L7833 для получения напряжения 3,3V, используемого ATmega8 и LCD.
J2: Разъем для ЖК-дисплея, идущий на Nokia 5110 LCD.
J3: Геркон. Вход импульсов для подсчета микроконтроллером.
J4: Разъем полярности. Он должен быть подключен параллельно обмотке двигателя. Схема слежения была расчитана для 12-вольтового двигателя, но ее можно применить под другое напряжение двигателя, регулируя номиналы делителей напряжения, образованные R3-R4 и R5-R6. Если двигатель подключен к прямой полярности, на PD0 будет высокий лог. уровень, если двигатель подключен к обратной полярности, то на PD1 будет высокий лог. уровень. Эта информация используется в коде для увеличения или уменьшения счетчика.
J5: Сброс счетчика. При нажатии кнопки, произойдет обнуление счетчика.
Разъем ISP: это 10-контактный разъем для программатора USBAsp AVR.

Схема устройства

Фото готового устройства


Вариант 2: ATmega8 + 2x16 HD44780 LCD + питание 5V

Некоторые из моих читателей попросили сделать вариант счетчика в котором используется дисплей 2x16 HD44780 (или меньший вариант 1x16). Для этих дисплеев требуется напряжение питания 5V, поэтому стабилизатор на 3,3V не актуален.

Схема устройства

Биты конфигурации микроконтроллера для обоих вариантов: LOW - 0xFF, HIGH - 0xC9.

Архив для статьи "Счетчик витков для намоточного станка"
Описание:

Исходный код(Си), файлы прошивок для микроконтроллера

Размер файла: 111.35 KB Количество загрузок: 257

В работе радиолюбителей и электриков полезны устройства для наматывания медного провода диаметром 1,5 мм на специальную электрическую катушку. В промышленных условиях данный процесс требует скорости и точности. Домашние мастера могут воспроизвести такую технологию. Для этого понадобится самодельный намоточный станок. Для него характерны такие признаки:

  • простота создания и эксплуатации;
  • возможность использования разных трансформаторов;
  • наличие дополнительных функций: подсчет количества проволочных мотков.

Метод работы намоточного станка

Станок для намотки – востребованное оборудование, с помощью которого наматывают трансформаторные однослойные и многослойные катушки цилиндрического типа и всевозможные дроссели. Намоточное устройство равномерно распределяет проволоку обмотки с определенным уровнем натяжения. Оно бывает ручным и автоматическим, и работает по такому принципу:

  • Вращение рукоятки задает намотку проводки или кабеля на каркас катушки. Она служит основанием изделия и надевается на специальный вал.
  • Проволока перемещается горизонтально благодаря направляющему элементу укладчика.
  • Количество витков определяют специальные счетчики. В самодельных конструкциях эту роль может выполнять велосипедный спидометр или магнитно-герконовый датчик.

Ручной прибор для укладки провода довольно примитивный, поэтому редко применяются на производстве.

Намоточный станок на механическом приводе позволяет выполнять сложную обмотку:

  • рядовую;
  • тороидальную;
  • перекрестную.

Он функционирует с помощью электрического двигателя, который задает движение промежуточного вала с использованием ременной передачи и трехступенчатых шкивов. Большую роль при этом играет фрикционная муфта сцепления. Благодаря ей станок работает плавно, без толчков и обрывов проволоки. Шпиндель с закрепленной оправой, на которую надета катушка, производит запуск счетчика. Намоточный станок настраивается с помощью винта под любую ширину катушечного каркаса.

Современные модели оснащены цифровым оборудованием. Они работают посредством специально заданной программы, которая хранит информацию в запоминающем устройстве. Значение длины и диаметра провода позволяет точно определить точку пересечения линий.

Механизм намоточного станка

Станок для намотки классифицируют по группам:

  • рядовой;
  • универсальной;
  • тороидальной намотки.



Каждое изделие имеет индивидуальную конструкцию.

Намоточный станок, выполняющий рядовую укладку проволоки, состоит из таких элементов:

  • Механизм намотки имеет вид сварной рамы, которая оборудована двигателем, зубчато-ременной передачей, передней и задней бабкой.
  • Механизм раскладки позволяет перемещать длинномерный материал вдоль оси намотки. Это сварная конструкция, по которой двигается каретка с направляющими роликами для провода.
  • Модели устройств отличаются друг от друга габаритами и функциональными возможностями.

Стандартная модель прибора для укладки провода несколькими перегибами за один оборот предполагает наличие таких элементов:

  • Основной каркас, состоящий из деревянных или металлических стоек, которые занимают вертикальное положение.
  • Между опорами расположены две горизонтальные оси: одна предназначена для пластин, другая – для катушки.
  • Сменные шестерни, посылающие на катушку вращение.
  • Рукоятка, которая вращает катушечную ось. Для ее фиксации используют цанговый зажим.
  • Фиксаторы: гайки, винты.

Намотка проволоки на тороидальные сердечники осуществляется посредством специализированного оборудования кольцевого типа:

  • Приспособление имеет вид челнока, работающего по принципу швейной иглы.
  • Шпуля представляет собой механизм двух пересекающихся колец с вынимающимся сектором, на который устанавливают тороидальный каркас.
  • Вращение шпули задает электродвигатель.

Необходимые материалы и комплектация для изготовления

Чтобы собственноручно сделать станок для намотки проволоки на круглый каркас, понадобится несколько деталей.

Станина из листового материала, скрепленного сварочным методом. Оптимальная толщина основания – 15 мм, боковых частей – 6 мм. Устойчивость конструкции обеспечивается ее тяжестью:

  • Боковые части прикладывают друг к другу, одновременно просверливают в них отверстия.
  • Подготовленные элементы приваривают к основанию.
  • В высоко расположенные пробоины монтируют втулки, в нижние – подшипники, которые можно взять из использованного дисковода.
  • Крепежные детали с внешней стороны боковин надежно фиксируют крышками.

Важные составляющие конструкции станка – валы:

  • Верхний вал диаметром 12 мм держит каркас катушки. Его роль может исполнять аналогичная конструктивная деталь вышедшего из строя матричного принтера.
  • На средний вал такого же диаметра опирается устройство подачи длинномерного материала. Перед вводом в эксплуатацию его желательно отполировать.
  • Нижний вал является подающим элементом. Его размеры зависят от шага резьбы.

Втулка укладчика диаметром и длиной по 20 мм. Ее внутренняя резьба совпадает с резьбой нижнего вала.

Шкивы – трехступенчатые, выточенные из стали, общей толщиной не более 20 мм. В противном случае придется увеличить хвостовики верхнего и нижнего валов. Каждый блок содержит три канавки с разным диаметром, в зависимости от сечения проволоки. Их ширина определяется пассиками. Такая комбинация обеспечивает большое разнообразие шагов намотки провода.

Устройство укладчика проволоки

Укладка и намотка проволоки осуществляются за счет трех пластин, скрепленных между собой винтами диаметром 20 мм. В верхней части делают небольшое отверстие 6 мм, куда вставляют винт регулировки натяжения:

  • В верхнюю и нижнюю часть внутренней пластины монтируют фторопластовую и стальную втулки диаметром и длиной по 20 мм.
  • Между наружными элементами вклеивают кожаный желобок толщиной до 2-х мм, необходимый для выравнивания и натягивания проволоки катушки.
  • Вверху укладчика монтируют специальный стержень с резьбой или мини-струбцину, которая скрепляет внешние пластины и регулирует натяжение. Расстояние крепления зависит от диаметра провода.
  • Для удобства работы конструкцию дополнительно оснащают откидным кронштейном для катушки.

Изготовление счетчика витков

Для определения количества намотанных витков на станке необходим специальный счётчик. В самодельном станке устройство делают так:

  • К верхнему валу крепят электромагнит.
  • Герметизированный контакт располагают на одной из боковин.
  • Выведенные контакты геркона соединяют с калькулятором в том месте, где находится кнопка «=».
  • Катушку с проводом размещают отдельно – на другом валу с рычагами, которые поднимают устройство вверх и складывают его внутрь станка.

Благодаря этим элементам, оборудование становится компактным и не занимает много места.

Принцип работы на станке

Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:

  1. Верхний вал подготавливают к работе: снимают шкив, задают нужную длину каркаса катушки, устанавливают правый и левый диски.
  2. В отверстие верхнего вала вставляют крепежное изделие, центрируют и зажимают каркас специальной гайкой.
  3. На подающий вал монтируют нужный шкив для первичной обмотки.
  4. Напротив каркаса катушки устанавливается укладчик.
  5. Пассик одевают на шкивы кольцом или восьмеркой, в зависимости от вида укладки.
  6. Металлический провод заводят под дополнительный вал, укладывают в желобок, закрепляют.
  7. Натяжение проволоки регулируют при помощи зажимов, расположенных вверху укладчика.
  8. Провод должен плотно наматываться на основу катушки.
  9. На калькуляторе фиксируют числовое значение «1+1».
  10. Каждый оборот вала прибавляет заданный счет.
  11. Если витки нужно отмотать назад, на вычислительном устройстве нажимают «–1».
  12. Когда провод достигнет противоположной части каркаса, с помощью цангового зажима меняют положение пассика.

Под разную толщину металлического провода соотносят шкив с шагом намотки.

Ознакомившись с рядом опубликованных в журнале конструкций счётчиков различного назначения (например, ), я принял решение разработать свой вариант счётчика витков, в котором использована энергонезависимая память микроконтроллера. В результате удалось создать простой и удобный в работе счётчик витков для намоточного станка, не содержащий дефицитных деталей.

Рис. 1
Счётчик состоит из нескольких узлов (рис. 1 ). Основой конструкции служит микроконтроллер DD1, к которому через токоограничительные резисторы R10-R16 подключён четырёхразрядный светодиодный индикатор HG1. Две оптопары - излучающий ИК диод- фототранзистор (VD2VT1, VD3VT2), - образующие датчик числа оборотов рабочего вала станка, формируют импульсы низкого уровня, по которым микроконтроллер определяет направление вращения и число оборотов вала. Предусмотрена кнопка SB1 для обнуления памяти, а также вспомогательные цепи: R2C2, работающая в составе встроенного тактирующего генератора микроконтроллера, VD1C1, сохраняющая напряжение питания, необходимое для перехода микроконтроллера в режим SLEEP, и R6R8, следящая за напряжением питания счётчика.
Известно, что микроконтроллеры семейства PIC довольно капризны при работе с EEPROM (особенно, когда запись в неё происходит автоматически). Уменьшение напряжения питания может исказить содержимое памяти При работе счётчика линия RB1 (вывод 7) микроконтроллера, к которой подключена цепь R6R8, опрашивается на наличие напряжения питания, и если оно пропадает, то благодаря цепи VD1C1 микроконтроллер успевает перейти в спящий режим, тем самым блокируя дальнейшее выполнение программы и защищая информацию в EEPROM. В процессе счёта микроконтроллер будет сохранять в памяти числа после каждого оборота рабочего вала станка. При каждом очередном включении питания индикатор HG1 отобразит то число, что было до отключения.
Датчик представляет собой небольшую печатную плату (22×22 мм), на которой смонтированы два излучающих диода и два фототранзистора, установленных так, что образуют два оптических канала передатчик-приемник. Оптические оси каналов параллельны, межосевое расстояние - около 10 мм.
На рабочем валу станка неподвижно закреплена шторка в виде диска из жёсткого непрозрачного для ИК лучей материала (текстолит, гетинакс, металл, пластик) толщиной 1…2 мм. Диаметр шторки - 35…50 мм, диаметр центрального установочного отверстия равен диаметру вала. Плату на станке фиксируют так, чтобы шторка, вращаясь вместе с валом, могла перекрывать собой оба ИК луча.
В шторке пропиливают вырез в форме неполного сектора. Угловая ширина и глубина выреза должны быть такими, чтобы при вращении вала шторка обеспечивала кратковременное прохождение ИК излучения сначала только через один канал, затем через оба и, наконец, только через другой, как это схематически проиллюстрировано на рис. 2 . Цветом показаны каналы, открытые в той или иной позиции. Такой порядок следования сигналов с датчика даёт микроконтроллеру возможность определять направление вращения рабочего вала станка.

Счётчик рассчитан на питание от батареи из трёх гальванических элементов АА (R6), но можно использовать любой сетевой блок со стабилизированным выходным напряжением 5 В.

Вместо «поверхностных» резисторов можно использовать МЛТ-0,125 или С2-23 мощностью 0,062 Вт. Кнопка SB1 - любая, подходящая по месту крепления на плате. Вместо E40281-L-O-0-W подойдёт цифровой индикатор FYQ-2841CLR.
Программа микроконтроллера разработана и отлажена в среде Proteus, после чего с помощью программатора ICProg загружена в микроконтроллер. После установки микроконтроллера в панель при первом и последующих включениях счётчика индикатор отобразит знак «минус» во всех знакоместах. Примерно через две секунды на табло появятся нули - это признак готовности счётчика к работе.

В программе предусмотрена функция аварийного обнуления памяти на тот случай, когда в неё попадёт ошибочная информация и микроконтроллер «зависает» (такое бывает крайне редко, но быть может). Для возвращения микроконтроллера в рабочий режим нужно выключить питание счётчика, нажать на кнопку «Обнуление» и, не отпуская её, включить питание. Как только табло отобразит нули, можно продолжать работать, но информация о прежнем числе витков будет, разумеется, утрачена.
В налаживании правильно собранное устройство не нуждается.

ЛИТЕРАТУРА
1. Долгий А. Усовершенствованный реверсивный счётчик. - Радио, 2005, №11, с. 28, 29.
2. Гасанов А., Гасанов Р. Электронный счётчик. - Радио. 2006, № 11, с. 35, 36.

А. БАНКОВ, г. Орёл (Радио, №8 2011г)

И не о чём не помышлял, пока не попалось мне на глаза какое-то незамысловатое счётное устройство. То, что оно должно быть приспособлено для подсчёта количества наматываемых витков провода на катушки трансформаторов - сомнению не подлежало, ибо нет наслаждения выше, чем делая одно, думать о другом. А разве находясь в состоянии полного сосредоточения (сродни трансу ) и при этом бубня отсчёт витков, это возможно? А приспособить не сложно. Также как и найти такую же штукенцию или ей подобную. Различных счётчиков сейчас уйма, а подойдёт даже неисправный. Тем более, что в начале его нужно аккуратно, запоминая взаимное расположение деталей (а лучше всё это сфотографировать) «распотрошить» и выкинуть всё лишнее.

Итак, из внутреннего содержимого оставляем цифровые колёса, зубчатые шестерни, оси для их посадки и стойки-держатели осей которые собираем «по месту» (так, как они и стояли до разборки). Оси в левую стойку желательно вклеить. На цифровых колёсах, рядом с центральным отверстием есть ещё одно – сборочное, им колесо надевается на шпильку (ровную и упругую проволочку, которая убирается перед установкой колпака). Без этой помощницы ничего не выйдет. При этом перед креплением второй стойки не забываем надеть на ведущее колесо резиновый пассик (лучше плоский) подходящей длины.


В донной части и в колпаке, по центру, делаем сквозные отверстия (например диаметром 3мм) для дальнейшего их скрепления винтом с гайкой. Это обязательно, ибо в процессе эксплуатации будут присутствовать сотрясения конструкции, при которых всё нами собранное будет постоянно разваливаться (проверено). Также в колпаке делается пропил шириной чуть менее (чтоб не слетал пассик) ведущего цифрового колеса и длиной через весь колпак. Не лишними будут ещё одно – два отверстия в боковой стенке колпака, они пригодятся при его установке на место, ибо при этом нужно попасть верхними шлицами на стойках в соответствующие пазы (кстати, левый и правый разные размером – не путать) внутри колпака. Вот через них отвёрточкой и направлять. В донной части нужно предусмотреть пару отверстий для крепления винтами или шурупами всей, уже собранной конструкции к намоточному устройству.


Как и в каком месте крепить, собранный счётчик к намоточному устройству – полная свобода творчества. А вот их рабочее соединение - вот такое:


На ведущий вал намоточного устройства устанавливается шкив (это в идеале) или втулка из мягкой пластмассы с внутренним диаметром чуть менее 6 мм (чтобы одевались внатяг) и наружным диаметром при котором один поворот ведущего вала будет соответствовать одному повороту ведущего цифрового колеса счётчика. Самый простой вариант – на подходящую полихлорвиниловую или толстую пластмассовую трубку длиной 10 мм наматывается достаточной толщиной (ну скажем до диаметра 20 мм) узкий скотч (можно изоленту, но хуже) и начинаем настройку, при необходимости отматывая или подматывая скотч до оптимальной толщины.


Короче, добиваемся соотношения передаточного числа ОДИН к ОДНОМУ . Особо не упорствуя, получилось сделать погрешность в +1 виток на 150 оборотов вала намоточного устройства. Ну а известная погрешность полностью исключает неудовлетворительный итог работы. Теперь во время работы можно мечтать, петь песни и, при необходимости, достойно отражать нападки прочих членов семьи. С пожеланием успеха, Babay .

Обсудить статью СЧЁТЧИК ВИТКОВ


Понадобилось мне в один прекрасный день намотать катушки, и сразу же возник вопрос как считать витки, а в уме считать не хотелось. Вот и пришла мысль соорудить счетчик из калькулятора.
Для этого понадобился лежавший без дела китайский калькулятор, кнопка, пара проводков и изготовленный из куска пластика кулачек для нажатия на кнопку.

Над так называемым «станком» прошу не смеяться: я катушки наматываю редко, даже не знаю, когда это будет в следующий раз. Поэтому собрал всё на скорую руку и не стал городить что-то грандиозное.
Пара уголков, стержень с резьбой, гайки, шайбы разных размеров - всё это в изобилии в ближайшем магазине крепежа по очень демократичным ценам.
Стержень с каркасом катушки свободно вращается в отверстиях уголков.

Очевидное усовершенствование для регулярного применения - напрашивается геркон вместо механической кнопки и магнит на кулачке. Получим бесконтактный датчик оборотов.


Изготовленный пластиковый кулачок и обнаруженная тактовая кнопка.


Провода подпаиваем к выводам кнопки [=] (их нужно найти и зачистить на калькуляторе),
а другие концы на кнопку.


В итоге получается вот такая конструкция


При намотке первого витка устанавливаем кулачек за срабатывание кнопки
На калькуляторе набираем


Начинаем намотку, кулачек проходит оборот и нажимает на кнопку, на калькуляторе светится цифра 1,
И так далее: при каждом обороте прибавляется 1.
1+1=2
2+1=3…
Вот что получается постепенно: