Опубликовано 15.05.17 13:53

Исследователи не исключают апокалиптичного развития событий на фоне испытаний Большого адронного коллайдера.

По мнению ученых, конец света может наступить уже 15 мая 2017 года после испытаний адронного коллайдера, запуск которого намечен на сегодняшний день.

Мнения участвующих в работе ускорителя заряженных частиц специалистов, в свою очередь, разделились: одни прогнозируют невероятный скачок в развитии науки и открытие ранее неизведанных областей, а другие предупреждают о том, что разгон атомных частиц может создать инткббэч настоящую черную дыру, которая поглотит не только Землю, но и всю Солнечную систему.

Некоторые утверждают, что запуск коллайдера буквально разрушит стену между реальным миром и потусторонним. Самые пессимистично настроенные эксперты опасаются, что 15 мая будут открыты "врата ада", параллельный ммир, через который к людям выйдет вся нечисть.

Специалисты отмечают, что уже сейчас при работе андронного коллайдера над Европой происходят различные аномальные явления. Они уверены, что даже при старом ускорители Linac 2 начинают происходить изменения на Земле. Когда же заработает Linac 4, ситуация может вообще выйти из-под контроля.

Так, в минувшем году совершил самоубийство доктор Эдвард Мантилла. Он трудился в CERN, но перед смертью решил уничтожить все свои наработки, хранившиеся в памяти компьютера.

«Сегодня мы стоим на пороге величайшего открытия или все-таки конца мира? Что ж, завтра это будет известно, а пока мы можем только надеяться на лучшее, на Высшие силы, которые в очередной раз простят глупость человечества и не допустят Апокалипсиса на Земле», - написал он в своем посмертном письме.

Ранее знаменитый британский астрофизик Стивен Хокинг говорил о том, что ученые могут случайно создать мироскопическую черную дыру на Большом адронном коллайдере, причем лично он ждет это открытие.

Положить конец существованию нашей планеты может запуск Большого андронного коллайдера с ускорителем Linac 4. Его ученые планируют включить 15 мая.

Как считают некоторые исследователи, завтрашний день может стать началом «Апокалипсиса». Специалисты отмечают, что эту дату ранее назвал и Папа римский Франциск.

Возможно, что именно запуск Большого андронного коллайдера был причиной визита президента США Дональда Трампа в Ватикан. Этот визит, уверены некоторые ученые, демонстрирует тревожность положения.

О том, что Большой андронный коллайдер может спровоцировать возникновение черной дыры предупреждал и Стивен Хокинг. Он считает, что эта черная дыра может поглотить не только Землю, но и всю Солнечную систему.

В CERN допускают, что Большой андронный коллайдер может открыть двери в параллельные миры. А вот какие последствия повлечет это, пока не готов сказать никто.

Специалисты отмечают, что уже сейчас при работе андронного коллайдера над Европой происходят различные аномальные явления. Они уверены, что даже при старом ускорители Linac 2 начинают происходить изменения на Земле. Когда же заработает Linac 4, ситуация может вообще выйти из-под контроля.

О том, что этот проект несет опасность нашей планете, говорили неоднократно и другие ученые. Знают о ней и физики, которые работают в этом проекте. Но они держат все в тайне, а любые попытки рассказать правду о Большом андронном колладейре, судя по всему, пресекаются.

Так, в минувшем году совершил самоубийство доктор Эдвард Мантилла. Он трудился в CERN, но перед смертью решил уничтожить все свои наработки, хранившиеся в памяти компьютера.

«Сегодня мы стоим на пороге величайшего открытия или все-таки конца мира? Что ж, завтра это будет известно, а пока мы можем только надеяться на лучшее, на Высшие силы, которые в очередной раз простят глупость человечества и не допустят Апокалипсиса на Земле», - написал он в своем посмертном письме.

Одно из первых столкновений 2017 года в детекторе ATLAS

23 мая в Большом адронном коллайдере прошли первые в 2017 году столкновения протонов в рамках научной программы коллайдера. Завершена калибровка детекторов и тысяч подсистем крупнейшего ускорителя в мире после зимнего перерыва. Ожидается, что в следующие шесть месяцев коллайдер удвоит объем статистики столкновений при энергии 13 тераэлектронвольт. Об этом сообщает пресс-релиз CERN.

Каждую зиму коллайдер прерывает свою работу для обновления и ремонта систем ускорителя и детекторов. Несколько недель уходит у инженеров на последующий запуск БАК. Так, в этом году первые протонные пучки появились в ускорителе 29 апреля - инженеры проверили работоспособность радиочастотных резонаторов, ответственных за ускорение частиц и постепенно подняли кинетическую энергию частиц до требуемых 6,5 тераэлектронвольт (в 6,5 тысяч раз больше, чем энергия покоя протона). Физики настроили магниты и коллиматоры, корректирующие форму и траекторию пучка и обеспечивающие столкновения между встречными пучками.

С 10 мая начались столкновения в точках пересечения пучков - основных детекторах БАК: ATLAS, LHCb, CMS и ALICE. Главная задача предварительных столкновений - проверка управляемости пучков и тестирование систем детекторов, в частности, корректировка положения точки, в которой пучки сталкиваются. Во время предварительных столкновений используются пучки, состоящие из небольшого количества сгустков (около десяти против более двух тысяч) и гораздо меньшего количества протонов, чем во время сбора научных данных.

Сейчас интенсивность пучков также невелика. Постепенно физики будут наращивать количество протонов в сгустках и делать сгустки плотнее - это ускорит темпы столкновений протонов и сбора статистики. В 2016 году ученые набрали интегральную светимость около 40 обратных фемтобарн - эта величина, согласно пресс-релизу организации, соответствует 6,5 миллионам миллиардов столкновений протонов. По плану на 2017 год ожидается интегральная светимость установки по меньшей мере в 45 обратных фемтобарн. Для сравнения, в 2015 году коллайдер обеспечил интегральную светимость около 4,2 обратных фемтобарн, а за 2012 год Run 1 - 23 обратных фемтобарн.


Одно из первых столкновений в детекторе CMS

В отличие от 2015 и 2016 года, в конце нового сезона работы ускорителя не будет сеанса столкновений с ионами свинца для генерации кварк-глюонной плазмы. Это состояние вещества, моделирующее первые минуты жизни Вселенной. Вместо этого детектор ALICE продолжит обработку данных прошлых лет и будет собирать информацию о протон-протонных столкновениях. Недавно физики о том, что несмотря на небольшую массу протонов, в их столкновениях тоже может образовываться кварк-глюонная плазма.

CMS и ATLAS продолжат исследования свойств бозона Хиггса, открытого в 2012 году. Эксперименты определят параметры рождения и каналов распада частицы, а также то, как она взаимодействует с другими частицами. Кроме того, вместе с экспериментом LHCb (наше интервью с руководителями коллаборации можно прочесть ), физики продолжат анализировать редкие и экзотические процессы в поисках следов Новой физики.

Увеличив объем статистики ученые смогут узнать природу необычных пиков высокоэнергетических событий, которые могут указывать на новые, еще не открытые частицы. К примеру, недавно ATLAS об избытке рождения пар бозон Хиггса-бозон слабого взаимодействия с суммарной энергией три тераэлектронвольта. Статистическая значимость события невелика - не превышает 3,3 сигма, но если его источником окажется реальная частица, то ее масса будет в десятки раз больше, чем у любой из известных элементарных частиц.

Владимир Королёв

Завершилась на мажорной ноте. Несмотря на поздний запуск и проблемы с одной из вакуумных секций , преследовавшие техников практически весь год, коллайдер все же смог выполнить планы по набору данных и даже превысил их (рис. 1). Интегральная светимость, набранная за 2017 год, достигла 50 fb −1 в детекторах ATLAS и CMS и почти 2 fb −1 в специализированном детекторе LHCb. Полная статистика сеанса Run 2 приближается к отметке 100 fb −1 . Она, конечно, пока еще целиком не обработана, но первые предварительные результаты с учетом статистики 2017 года ожидаются уже этой весной.

Интересно сравнить ход набора данных в 2017 году по сравнению с графиками прошлых лет (рис. 2). Стараясь справиться с технической проблемой, ограничивавшей количество сгустков в пучках, специалисты научились фокусировать их еще сильнее: параметр beta* удалось уменьшить до 30 см. В результате пиковая светимость временами достигала 200% от номинальной. Это позволило физикам впервые реализовать в детекторах ATLAS и CMS такую опцию как «выравнивание светимости» (luminosity leveling). В таком режиме работы светимость коллайдера искусственно понижается в первые часы столкновений небольшим разведением пучков в стороны; она не задирается по максимуму, а держится на постоянном уровне (рис. 3). Это позволяет вести работу в более-менее одинаковых условиях на протяжении длительного времени и упрощает последующий анализ данных. Выравнивание светимости уже давно применяется в детекторе LHCb, но через несколько лет его придется делать и в основных детекторах ATLAS и CMS. Поэтому нелишним было опробовать такой режим уже сейчас, раз пиковая светимость это позволяет.

Программа протонных столкновений завершилась в 2017 году двумя специальными сеансами. Первый - столкновения с расфокусированными пучками, в которых протоны движутся с исключительно малыми поперечными импульсами. Такая конфигурация открывает возможности для изучения мягких адронных процессов. Второй специальный сеанс - это столкновения на пониженной энергии 5,02 ТэВ против обычных 13 ТэВ, который будет полезен для сравнения ядерных столкновений с протонными. Во время этого сеанса, между прочим, специалисты из коллаборации LHCb продемонстрировали чудеса коллайдерной эквилибристики. Они впрыснули прямо в вакуумную трубу , по которой летают протоны, небольшую порцию газообразного ксенона. В результате детектор умудрялся наблюдать одновременно и обычные протон-протонные столкновения, и соударения протонов с неподвижной мишенью - ядрами ксенона.

Изюминкой 2017 года стал короткий сеанс столкновений ядер ксенона. До сих пор LHC работал только с протонами и ядрами свинца. Однако для изучения ядерных эффектов при сверхвысоких энергиях полезно проверить и ядра промежуточных масс. Такой сеанс прошел 12 октября , он продлился восемь часов, и в ходе него все четыре основных детектора регистрировали результаты столкновений (рис. 4).

Рекордами похвастался и IT-отдел ЦЕРНа. Полный объем сырых данных о столкновениях на LHC, накопленный за все время его работы, уже превысил 200 петабайт, которые хранятся на магнитных лентах для более надежной сохранности. Темп поступления данных тоже колоссальный: за один только октябрь поступило 12 петабайт информации о столкновениях.

Наконец, ЦЕРН напоминает, что его исследования не замыкаются на одном лишь Большом адронном коллайдере. В видеоролике CERN in 2017: a year in images пресс-отдел ЦЕРНа собрал воедино самые впечатляющие научные и технические достижения лаборатории в минувшем году.