1) Аналитический способ.

Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

(начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

При этом скорость мотоциклиста изменялась по закону:

В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

Решая это уравнение относительно , находим время встречи:

Это квадратное уравнение. Определяем дискриминант:

Определяем корни:

Подставим в формулы числовые значения и вычислим:

Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

Таким образом, время, когда мотоциклист догнал велосипедиста:

Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

2) Графический способ.

На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.

Равноускоренное движение - движение, при котором ускорение постоянно по модулю и направлению .

Примером такого движения является движение тела, брошенного под углом α {\displaystyle \alpha } к горизонту в однородном поле силы тяжести - тело движется с постоянным ускорением a → = g → {\displaystyle {\vec {a}}={\vec {g}}} , направленным вертикально вниз.

При равноускоренном движении по прямой скорость тела определяется формулой:

v (t) = v 0 + a t {\displaystyle v(t)=v_{0}+at}

Зная, что v (t) = d d t x (t) {\displaystyle v(t)={\frac {d}{dt}}x(t)} , найдём формулу для определения координаты x:

x (t) = x 0 + v 0 t + a t 2 2 {\displaystyle x(t)=x_{0}+v_{0}t+{\frac {at^{2}}{2}}}

Примечание . Равнозамедленным можно назвать движение, при котором модуль скорости равномерно уменьшается со временем (если вектора v → {\displaystyle {\vec {v}}} и a → {\displaystyle {\vec {a}}} противонаправлены). Равнозамедленное движение также является равноускоренным.

Энциклопедичный YouTube

  • 1 / 5

    В случае одномерного равноускоренного движения вдоль координаты x имеет место формула:

    Δ x = v x 2 − v 0 x 2 2 a x {\displaystyle \Delta x={\frac {v_{x}^{2}-v_{0x}^{2}}{2a_{x}}}} ,

    Криволинейное равноускоренное (равнопеременное) движение также можно рассматривать как одномерное. В этом случае используется обобщённая координата S , часто называемая путём . Эта координата соответствует длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:

    Δ S = v 2 − v 0 2 2 a τ {\displaystyle \Delta S={\frac {v^{2}-v_{0}^{2}}{2a_{\tau }}}} ,

    где a τ {\displaystyle a_{\tau }} - тангенциальное ускорение , которое «отвечает» за изменение модуля скорости тела.

    Из вышеприведенных формул можно получить выражения для определения конечной скорости тела, при известных начальной скорости, ускорении и перемещении:

    v x = ± v 0 x 2 + 2 a x Δ x {\displaystyle v_{x}=\pm {\sqrt {v_{0x}^{2}+2a_{x}\Delta x}}}

    В случае криволинейного равноускоренного движения имеем:

    v = ± v 0 2 + 2 a τ Δ S {\displaystyle v=\pm {\sqrt {v_{0}^{2}+2a_{\tau }\Delta S}}}

    Аналогичные соотношения можно записать для выражений:

    v y = ± v 0 y 2 + 2 a y Δ y {\displaystyle v_{y}=\pm {\sqrt {v_{0y}^{2}+2a_{y}\Delta y}}} ; v z = ± v 0 z 2 + 2 a z Δ z {\displaystyle v_{z}=\pm {\sqrt {v_{0z}^{2}+2a_{z}\Delta z}}} .

    И найти конечную скорость по теореме Пифагора

    | v → | = v x 2 + v y 2 + v z 2 {\displaystyle |{\vec {v}}|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}} .

    Теорема о кинетической энергии точки

    Формула перемещения при равноускоренном движении используется при доказательстве теоремы о кинетической энергии . Для этого необходимо перенести ускорение в левую часть и домножить обе части на массу тела:

    m a x Δ x = m v x 2 2 − m v 0 x 2 2 {\displaystyle ma_{x}\Delta x={\frac {mv_{x}^{2}}{2}}-{\frac {mv_{0x}^{2}}{2}}} .

    Записав аналогичные соотношения для координат y и z и просуммировав все три равенства получим соотношение:

    F → ⋅ Δ r → = m v 2 2 − m v 0 2 2 {\displaystyle {\vec {F}}\cdot {\vec {\Delta r}}={\frac {mv^{2}}{2}}-{\frac {mv_{0}^{2}}{2}}} .

    Слева стоит работа постоянной равнодействующей силы F → {\displaystyle {\vec {F}}} , а справа - разность кинетических энергий в конечный и начальный момент движения. Полученная формула представляет собой математическое выражение теоремы о кинетической энергии точки для случая равноускоренного движения .

    Механика


    Формулы кинематики:

    Кинематика

    Механическое движение

    Механическим движением называется изменение положения тела (в пространстве) относительно других тел (с течением времени).

    Относительность движения. Система отсчета

    Чтобы описать механическое движение тела (точки), нужно знать его координаты в любой момент времени. Для определения координат следует выбрать ­тело отсчета и связать с ним систему координат . Часто телом отсчета служит Земля, с которой связывается прямоугольная декартова система координат. Для определения положения точки в любой момент времени необходимо также задать начало отсчета времени.

    Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета , относительно которой рассматривается движение тела.

    Материальная точка

    Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой .

    Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстояниями от него до других тел.

    Траектория, путь, перемещение

    Траекторией движения называется линия, вдоль которой движется тело. Длина траектории называется пройденным путем . Путь – скалярная физическая величина, может быть только положительным.

    Перемещением называется вектор, соединяющий начальную и конечную точки траектории.

    Движение тела, при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением . Для описания поступательного движения тела достаточно выбрать одну точку и описать ее движение.

    Движение, при котором траектории всех точек тела являются окружностями с центрами на одной прямой и все плоскости окружностей перпендикулярны этой прямой, называется вращательным движением.

    Метр и секунда

    Чтобы определить координаты тела, необходимо уметь измерять расстояние на прямой между двумя точками. Любой процесс измерения физической величины заключается в сравнении измеряемой величины с единицей измерения этой величины.

    Единицей измерения длины в Международной системе единиц (СИ) является метр . Метр равен примерно 1/40 000 000 части земного меридиана. По современному представлению метр – это расстояние, которое свет проходит в пустоте за 1/299 792 458 долю секунды.

    Для измерения времени выбирается какой-нибудь периодически повторяющийся процесс. Единицей измерения времени в СИ принята секунда . Секунда равна 9 192 631 770 периодам излучения атома цезия при переходе между двумя уровнями сверхтонкой структуры основного состояния.

    В СИ длина и время приняты за независимые от других величины. Подобные величины называются основными .

    Мгновенная скорость

    Для количественной характеристики процесса движения тела вводится понятие скорости движения.

    Мгновенной скоростью поступательного движения тела в момент времени t называется отношение очень малого перемещения Ds к малому промежутку времени Dt, за который произошло это перемещение:

    Мгновенная скорость – векторная величина. Мгновенная скорость перемещения всегда направлена по касательной к траектории в сторону движения тела.

    Единицей скорости является 1 м/с. Метр в секунду равен скорости прямолинейно и равномерно движущейся точки, при которой точка за время 1 с перемещается на расстояние 1 м.

    Ускорение

    Ускорением называется векторная физическая величина, равная отношению очень малого изменения вектора скорости к малому промежутку времени, за которое произошло это изменение, т.е. это мера быстроты изменения скорости:

    Метр в секунду за секунду – это такое ускорение, при котором скорость тела, движущегося прямолинейно и равноускоренно, за время 1 с изменяется на 1 м/с.

    Направление вектора ускорения совпадает с направлением вектора изменения скорости () при очень малых значениях промежутка времени, за который происходит изменение скорости.

    Если тело движется по прямой и его скорость возрастает, то направл­ение вектора ускорения совпадает с направлением вектора скорости; при убывании скорости – противоположно направлению вектора скорости.

    При движении по криволинейной траектории направление вектора скорости изменяется в процессе движения, вектор ускорения при этом может оказаться направлен под любым углом к вектору скорости.

    Равномерное, равноускоренное прямолинейное движение

    Движение с постоянной скоростью называется равномерным прямолинейным движением . При равномерном прямолинейном движении тело движется по прямой и за любые равные промежутки времени проходит одинаковые пути.

    Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным движением . При таком движении скорость тела изменяется с течением времени.

    Равнопеременным называется такое движение, при котором скорость тела за любые равные промежутки времени изменяется на одинаковую величину, т.е. движение с постоянным ускорением.

    Равноускоренным называется равнопеременное движение, при котором величина скорости возрастает. Равнозамедленным – равнопеременное движение, при котором величина скорости уменьшается.