В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях. Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками. В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов.

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Скорость разряда, а тем самым и скорость плавного затухания светодиода, может регулироваться номиналом сопротивления R3. Поэкспериментируйте, чтобы понять, как номинал влияет на быстроту розжига и затухания LED. Принцип следующий – выше сопротивление, медленнее затухание, и наоборот.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Широкое применение схемы нашли в тех местах, где одна часть контактов замыкается по минусу, а другая по плюсу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Видео

Для углубленного понимания всего происходящего в рассмотренных вариантах предлагаем посмотреть интересное видео, автор которого, при помощи программы проектировки электронных схем, постепенно показывает принцип работы плавного включения и выключения светодиода на разных вариантах. Внимательно посмотрев видео, Вы поймете почему обязательно нужно использовать транзистор.

Вывод

Рассмотренные решения являются самыми популярными и востребованными. В сети интернет, на формуах ведутся большие дискуссии по поводу простоты и малой функциональности данных схем, однако практика показала, что в быту их функционала хватает сполна. Большой плюс рассмотренных решений включения и выключения светодиодов – это простота изготовления и низкая себестоимость. Для разработки готового решения уйдет не более 3-7 часов.

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Схема с управляющим плюсом:


Отмечена распиновка IRF9540N и KT503

В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.

К О М П О Н Е Н Т Ы:

Транзистор IRF9540N
Транзистор KT503
Выпрямительный диод 1N4148
Конденсатор 25V100µF
Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
Односторонний стеклотекстолит и хлорное железо
Клеммники винтовые, 2-х и 3-х контактные, 5 мм

При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Р А Б О Т А:
?????????????????????????????????????????
?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.

2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.

С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.

Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.


4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Ф О Т О Г Р А Ф И И:

Убрал плату в термоусадку

В И Д Е О:

?????????????????????????????????????????
И Т О Г:
?????????????????????????????????????????
Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.

Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение. Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени. То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды. Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов. К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на 2,2 секунды. Естественно на практике это значение будет отличаться от расчетного как за счет разброса параметров (у электролитических конденсаторов допуски на номинал обычно очень большие) RC-цепи, так и за счет параметров самих светодиодов. Не нужно забывать, что p-n-переход начнет открываться и излучать свет при определенном пороговом значении. Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).
Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED с входом управления. Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу. В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet). В отличие от предыдущего способа, время на включение и выключение не будет зависеть от разброса параметров элементов схемы, температуры окружающей среды или падения напряжения на светодиодах. Но за точность нужно будет заплатить – это решение дороже.

Плавное включение и затухание светодиодов своими руками

Что такое плавное включение , или иначе розжиг светодиодов думаю представляют все.

Разберем подробно плавное включение светодиодов своими руками .

Светодиоды должны не сразу разжигается, а через 3-4 секунды, но изначально не мигать и не светиться вообще.

Схема устройства:


Компоненты:

■ Транзистор IRF9540N
■ Транзистор KT503
■ Выпрямительный диод 1N4148
■ Конденсатор 25V100µF
■ Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
■ Односторонний стеклотекстолит и хлорное железо
■ Клеммники винтовые, 2-х и 3-х контактные, 5 мм

Изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.


Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нежелательно руками прикасаться к поверхности платы.


Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему. Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.


Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.


Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.


Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.


С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).


Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.


После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.


После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.



Итог:

Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.

Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.

Наверное многим хотелось добавить в свое авто что-то новое, сегодня я расскажу как сделать это без особых затрат и технических изменений в конструкции автомобиля.
Устройство которое я сегодня хочу вам представить это не большая схема регулировки запуска и выключения нагрузки, в нашем случае осветительных приборов, освещения салона, подсветки приборной панели и т.д. Наше устройство позволит плавно включать и выключать любую из перечисленных нагрузок. Согласитесь куда приятнее когда при включении зажигания мы видим не резкое включение подсветки приборной панели, а плавный розжиг. То же можно сказать и о освещении салона и осветительных приборах.
От слов перейдем к делу и перед тем как начать сборку предлагаю ознакомиться со схемой:

Для начала расскажу о том как она подключается. К VCC+ нам необходимо подвести постоянные 12 В от аккумулятора которые и будут питать нашу нагрузку. К REM мы подключаем те 12 В которые появляются после включения зажигания, именно они и будут инициировать розжиг и по их исчезновению схема будет гасить освещение. Соответственно к контактам LED+ LED- мы подключаем нашу нагрузку (в моем случае светодиоды)
В качестве транзистора Т1 я использовал BC817 (аналог КТ503В) в качестве Т2 я взял IRF9540S. Если вы захотите увеличить время розжига вам необходимо увеличить номинал R2, для уменьшения соответственно понизить. Для управления временем гашения аналогичную операцию необходимо проделать с резистором R3.
Теперь можно переходить к сборке. Для уменьшения размеров устройства я использовал поверхностный монтаж.
Вот весь набор элементов, которые мне понадобились:

Платы были изготовлены по «ЛУТ» технологии из одностороннего текстолита.




Вот такое компактное устройство способное добавить эстетичности нашему автомобилю мы получили в итоге.

Расходы:
1. Резисторы 0,25 руб\шт. х4 = 1 Руб
2. BC817 = 3 руб.
3. IRF9540S = 35 руб
4. Конденсатор 8 руб
5. Клеммы 21,5

Итог: Всего за 70 руб. мы получаем довольно интересное устройство.
P. S. Видео с работой устройства: